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Two types of high-order numerical schemes suitable for computational aeroacoustics are examined. Truncation
error, ef� ciency, and the consequence of disparate temporal and spatial accuracy are discussed. The Gottlieb–

Turkel 2-4 predictor-corrector scheme and two Runge–Kutta schemes (4-4 and 4-6) are used to solve the one-
dimensional inviscid convection of a Gaussian pulse. For schemes with lower-order time stepping, the truncation
error caused by the time stepping dominates the solution for optimum time steps. Reducing the time step can
effectively increase the order of accuracy to that of the spatial discretization. However, this increased accuracy
is balanced by an increase in the computational cost. The uniformly fourth-order-accurate Runge–Kutta scheme
proves to be superior to the second-order temporal and fourth-order spatial accurate Gottlieb –Turkel scheme in
terms of truncationerror and computationalef� ciency. Increasing the spatial accuracy of the Runge–Kutta scheme
to sixth order does not improve the ef� ciency of the scheme. To illustrate the relevance to a representative multi-
dimensional problem, the Gottlieb–Turkel 2-4 and Runge–Kutta 4-4 schemes are then used to solve the unsteady
axisymmetric Navier–Stokes equations for a supersonic jet. For this case the Runge–Kutta scheme provides better
resolution of large-scale structures and requires less computational time.

Nomenclature
A = linearizing coef� cient
D = spatial operator
D j = jet diameter
E = � ux vector in axial direction
et = total energy per unit mass
F = � ux vector in radial direction
f = one-dimensional � ux
H = axisymmetric source term vector
l2 = residual error
p = pressure
p = order of accuracy
Q = conservationvariable vector
q = heat � ux
Re j = Reynolds number based on jet diameter
r = radial coordinate
T = temperature
t = time
u = axial velocity
v = radial velocity
x = axial coordinate
° = ratio of speci� c heats
1t = time step
1x = spatial step
¹ = dynamic viscosity
½ = density
¾ = stress tensor
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Subscripts

ex = exact
j = jet
v = viscous
0 = stagnation/total condition
1 = freestream

Superscript

¤ = intermediate time

Introduction

C OMPUTATIONAL methods are being increasingly used to
solve aeroacousticproblems.Many computationalaeroacous-

tics (CAA) analyses employ large-eddy simulations (LES) and di-
rect numerical simulations (DNS). These types of analyses impose
strict requirements on the numerical scheme. Both types of simu-
lations are inherently unsteady, requiring a time accurate/unsteady
analysis. In addition, to capture the turbulent scales and acoustic
waves high spatial accuracy is desired.

To obtain this accuracy, meshes on the order of millions of grid
points are required. As a result, accuracy comes at a very large cost
in terms of computational time; run times of several months are
common for realistic problems. Morris et al.1 performed an LES
analysis of a Mach 2.1 jet that used over 2 million grid points and
1000 CPU hours. A LES analysis of a low-speed jet, Mach 0.4, by
Zhao et al.2 used 3.6 million grid points and 4000 CPU hours. A
hybrid Reynolds averaged Navier–Stokes (RANS)/LES analysis of
a compressible mixing layer by Georgiadis et al.3 used 1.9 million
grid points and 2000 CPU hours. Freund’s benchmark DNS data
on low-Reynolds-number jets4;5 were obtained on grids of over 20
million points (run times were not reported).

Numerous numerical schemes have been developed for and ap-
plied to CAA problems. Recent work has focused on compact and
dispersionrelationpreservingschemes.6¡9 A great deal of effort has
focused on increasing the spatial accuracy of the numerical scheme
in order to reduce the grid requirementsand hence lower the compu-
tational cost.Because CAA involves the computing the propagation
of sound waves, a popular method for assessing the accuracy of
these schemes is the Fourier analysis of the spatial discretization.10

The accuracy of these schemes is commonly expressed in terms
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of the number of mesh points per wavelength required to resolve a
wave. The more traditional classi� cation of numerical schemes is
done by order of accuracy,with the spatialdiscretizationconsidered
separately from the temporal discretization. For example, a 2-4
scheme is second-order accurate in time and fourth-order accurate
in space. However, judging a numerical scheme based solely on its
spatial error, via a points per wavelength requirementor order of ac-
curacy, disregards two important factors: the effect of the temporal
discretizationon the error and the ef� ciency or computational cost
of the scheme. These factors become critical when the schemes are
applied to large-scale computations such as those just cited.

An examination of numerous numerical schemes was presented
in the proceedings of the � rst NASA-sponsored CAA workshop.11

This workshop examined the schemes on several benchmark prob-
lems relevant to CAA. However, the schemes were examined only
qualitatively in terms of numerical error. Typically only one spatial
discretization (a single grid) was used, and no attempt at quanti-
fying computational ef� ciency was made. For large-scale LES and
DNS the ef� ciency is an important consideration when choosing
or developinga numerical scheme. This paper examines the behav-
ior of two types of commonly used schemes in terms of numerical
error and computational cost on a one-dimensional model equa-
tion. To examine the relevance of the one-dimensional results on a
multidimensional problem, the schemes are applied to an unsteady
Navier–Stokes computation of a supersonic axisymmetric jet. Par-
ticular attention is paid to how the spatial and temporal errors affect
the overall order of accuracy and ef� ciency of the scheme.

Numerical Methods
The numerical schemes will be presented in terms of the inviscid

one-dimensionalconvection equation given by
@u

@t
C @ f

@x
D 0 (1)

where f D f .u/.

Gottlieb–Turkel Scheme
The � rst scheme examined is the Gottlieb–Turkel 2-4 scheme.12

It is a variant of MacCormack’s predictor-corrector method.13

MacCormack’s method was second-order accurate in both time
and space. Gottlieb and Turkel extended the spatial accuracy to
fourth-order while maintaining second-order temporal accuracy.
The scheme was developed 25 years ago, but is still widely used
for CAA applications. This method is robust, easy to implement,
and requires only two storage locations for each dependentvariable
(2-N storage):
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The leading terms in the truncation error for the Gottlieb–Turkel
scheme are
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where f is linearizedas f D Au. In additionto retainingthe second-
order time accuracy, it is important to note that the cross term is
dissipative and is scaled by 1t .1x/2.

Runge–Kutta Schemes
As seen with the Gottlieb–Turkel scheme, all higher-order vari-

ants of MacCormack’s method maintain second-order time accu-
racy. To quantify the detrimental effect of the disparity in temporal
and spatial accuracy, a uniformly fourth-orderscheme was desired.
To increase the order of time accuracy, an alternative method for
time advancement, the Runge–Kutta scheme, was necessary.

Runge–Kutta schemesare a popular family of numericalschemes
with higher-ordertemporal accuracy.These multistageschemes can
be formulatedfor any orderof accuracy.The numberof stages in the
scheme is equal to or greater than the desiredorder of accuracy.The
standard fourth-order Runge–Kutta scheme used by Jameson14 is a

Table 1 Coef� cients for fourth-order
low-dispersion Runge–Kutta scheme

Stage, m ®m ¯m

1 0.00000000000 0.1496590219993
2 ¡0.41789047450 0.3792103129999
3 ¡1.192151694643 0.8229550293869
4 ¡1.697784692471 0.6994504559488
5 ¡1.514183444257 0.1530572479681

four-stagealgorithmand requiresstorage locationsfor each variable
(2-N storage). Several researchers15¡18 have developed alternative
Runge–Kutta schemes that have a lower dispersion error than the
standard scheme, leading to greater stability and accuracy. To ac-
complish this, additional stages are required. The additional stages
provide a means to impose the additional constraints necessary to
minimize the error. All of the alternative schemes are based on a
general M-stage 2-N storage formulation given by

dum D ®m dum ¡ 1 C 1tD.um ¡ 1/ (4a)

um D um ¡ 1 C ¯m dum (4b)

for m D 1; : : : M , and whereu0 D un and uM D un C 1. The coef� cient
®1 is typically set to zero for the algorithm to be self-starting.The
operator D is the spatial � nite difference operator.

Carpenter and Kennedy’s � ve-stage fourth-order scheme15 was
chosen for its fourth-order accuracy, low number of stages, and
ease of programming. The coef� cients for the scheme are given in
Table 1.

Runge–Kutta 4-4 Scheme
For a uniformly fourth-order scheme, D.u/ would be a fourth-

order � nite differencestencil for ¡@ f =@x . A centraldifferencesten-
cil for @ f =@x is used here:
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The leading terms in the truncation error are
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The error caused by the spatial discretization is identical to that of
the Gottlieb–Turkel scheme, but the temporal error and the cross
term have been altered.

Runge–Kutta 4-6 Scheme
Many schemes currently in use combine fourth-order Runge–

Kutta time stepping with higher-order spatial operators. To mimic
these schemes a 4-6 scheme was created using a sixth-order central
difference:
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The leading terms in the truncation error for this scheme are
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One-Dimensional Model Problems
Two one-dimensionalproblemswereused to test the accuracyand

ef� ciency of the schemes.Both are based on the model equationjust
given [Eq. (1)].

Problem Descriptions
Problem 1

The � rst problem, from the � rst NASA CAA workshop11 is the
linear convectionof a Gaussian pulse, where f D u. The initial con-
dition is given by

u.x; 0/ D u0.x/ D 1
2 exp[¡ .2/.x=3/2] (9)

The domain is ¡20 · x · 450, and the solution is run for
0 · t · 400. An exact solution to this problem exists and is given by

uex.x; t/ D u0.x ¡ t/ (10)
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Problem 2
The secondproblemis nonlinear,where f D 1

2
u2. The initial con-

ditions and simulation time are set so that a smooth � nal solution is
obtained. The initial condition is

u.x; 0/ D u0.x/ D 1
8 exp[¡ .2/.x=10/2] (11)

The domain is ¡50 · x · 50, and the solution is run for 0 · t · 100.
A numerical approximation to the exact solution is obtained using
the method of characteristics.

Results
All of the one-dimensional computations were run using 64-bit

precision on an Apple Macintosh Powerbook G3 computer with a
266-MHz PowerPC G3 processor.

The error of the numerical scheme was measured by the l2 norm,
which is computed as follows:

l2 D
µ
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2
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For each problem the numerical schemes were run to determine
the maximum stable time step. Then, each scheme was run at a
number of differentvalues of 1t=1x as the spatial step was halved.

Problem 1
The exact solution to the linear problemis presented in Fig. 1. All

of the schemes approach the exact solution as 1t and 1x approach
zero. Error from the Gottlieb–Turkel scheme is plotted vs time step
and spatial step (Fig. 2). The terminal slope of the line p indicates
the order of accuracy of the scheme and is listed in the plot legend.
The error is plotted vs the time step in Fig. 2a. As expected from
the truncationerror analysis, the scheme is second order. When the
error is plotted vs the spatial step (Fig. 2b), the scheme retains its
second-order accuracy. The error caused by the time discretization
dominates the problem. This can be seen by the collapsing of the
data when plotted vs the time step and not the spatial step size. Only
where the time step is much smaller than the spatial step does the
scheme behave as a fourth-order scheme. To obtain fourth-order
behavior from the Gottlieb–Turkel scheme, the error term from the
time step must be reduced at the same rate as the error term from
the spatial step. To accomplish this, the time step must be reduced
by a factor of 1

4 as the spatial step is reduced by 1
2 . In other words,

1t=.1x/2 is held constant.Figure 3 veri� es that when adjusting the
time step in this manner fourth-order accuracy is obtained.

The error for Runge–Kutta 4-4 scheme is plotted in Fig. 4. These
data indicatethatthe schemeis trulya fourth-order-accuratescheme.
In addition, except for the highest value of 1t=1x where the time
error term dominates, the error is dominated by the spatial dis-
cretization.

Fig. 1 Solution to inviscid linear convection problem at t = 400.

a) Temporal error

b) Spatial error

Fig. 2 Error of Gottlieb–Turkel 2-4 scheme for the linear problem.

Fig. 3 Improved spatial error of Gottlieb–Turkel 2-4 scheme for the
linear problem.

Results for the Runge–Kutta 4-6 scheme (Fig. 5) are similar to
those for the Gottlieb–Turkel 2-4 scheme. For the larger time steps
the error caused by the lower-order time discretization dominates
the problem, making the scheme fourth-order accurate. By reduc-
ing the error from the time step at the same rate as the error from the
spatial step, sixth-order accuracy can be obtained (Fig. 6). For this
scheme this is done by reducing the time step by a factor of

p
2=4 as

the spatial step is reduced by 1
2 . Here .1t/2=.1x/3 is held constant.
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a) Temporal error

b) Spatial error

Fig. 4 Error of low-dispersion Runge–Kutta 4-4 scheme for the linear
problem.

The ef� ciency of a numerical scheme can be seen by compar-
ing the l2 error against the time required to obtain that error level.
The schemes are compared at their maximum stable time step, to
provide maximum ef� ciency. Figure 7 shows that the Runge–Kutta
schemesare clearly more ef� cient than the Gottlieb–Turkel scheme.
Runge–Kutta achieveserror levels below 10¡2 in at least an orderof
magnitude less time than the Gottlieb–Turkel scheme. This result is
caused by the lower truncation error and larger allowable time step
of the Runge–Kutta scheme. The Runge–Kutta 4-6 scheme has no
advantage over the Runge–Kutta 4-4 scheme caused by the domi-
nance of the time discretization error. Results for Gottlieb–Turkel
2-4 and Runge–Kutta 4-6 schemes are also shown when they were
run to achieve fourth- and sixth-order accuracy, respectively. The
data indicate that there is little or no bene� t of reducing the time
step to achieve the higher-order accuracy of the spatial discretiza-
tion. The bene� t of the higher-order accuracy is balanced by the
increased computational cost.

Problem 2
The exact solution to the smooth nonlinear problem is presented

in Fig. 8. Error data for this problem are shown in Figs. 9–14. The
results from the nonlinear analysis are very similar to the linear
case. Speci� cally, the lower-order temporal error of the Gottlieb–

Turkel 2-4 and Runge–Kutta 4-6 schemes dominate the results at
the larger time steps and render the schemes second- and fourth-
order, respectively. Reducing the time step of these schemes can
increase the order of accuracy to that of the spatial discretization
(Figs. 10 and 13) with a corresponding increase in computational
cost (Fig. 14). The higher-order Runge–Kutta schemes are more

a) Temporal error

b) Spatial error

Fig. 5 Error of low-dispersion Runge–Kutta 4-6 scheme for the linear
problem.

Fig. 6 Improved spatial error of low-dispersion Runge–Kutta 4-6
scheme for the linear problem.

ef� cient than the Gottlieb–Turkel scheme.Because of the increased
costand fourth-ordertemporalaccuracy,the 4-6 is notmore ef� cient
than the 4-4 scheme.

Axisymmetric Jet Analysis
The results of the preceding analysis indicate that a proper bal-

ance of the truncation error caused by the temporal and spatial
discretizations is a key component to the accuracy and ef� ciency
of a numerical scheme and could be important for CAA analyses,
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Fig. 7 Ef� ciency of the numerical schemes for the linear problem.

Fig. 8 Solution to inviscid nonlinear convection problem at t = 100.

where accurate resolution and computational cost are critical. To
determine whether the one-dimensionalresults are relevant to mul-
tidimensional problems of in interest in CAA, the Gottlieb–Turkel
2-4 and Runge–Kutta 4-4 schemes were implemented in a Navier–
Stokes solver for analysis of compressible nozzle � ows. A solution
� ltering technique19 was added to enhance stability. Both schemes
were used in an axisymmetric analysis of a Mach 1.4 round jet to
determine the effect of the numerical scheme on the resulting � ow-
� eld. The axisymmetric assumption ignores key physicalprocesses
present in the jet such as vortex stretching and � apping of the jet.
In addition no subgrid scale modeling or turbulence modeling of
any kind was used. These two simpli� cations prevent a realistic
� ow solution. But because the goal is to compare the effects of
the numerical scheme on a computation that is representative of
a DNS or LES analysis for a CAA application, they are reason-
able and allow solutions to be obtained at a reduced computational
cost.

The jet, which was examined experimentally by Panda and
Seasholtz,20 has a Reynolds number of 1.2 £ 106 and an exit Mach
number 1.4. The nozzle exhausted into quiescent air. Table 2 sum-
marizes the nozzle and ambient conditions.

Problem Description
The axisymmetric Navier–Stokes equations that govern the � ow-

� eld of the jet are

Table 2 Nozzle and ambient conditions

Quantity Symbol Value

Ratio of speci� c heats ° 1.4
Nozzle plenum pressure p0 j 312.41 kPa
Nozzle plenum temperature T0 j 300.0 K
Nozzle exit Mach number M j 1.395
Nozzle exit diameter D j 0.0254 m
Jet velocity U j 411.0 m/s
Ambient pressure p1 98.863 kPa
Ambient temperature T1 297.0 K
Reynolds number Re j 1:2 £ 106

a) Temporal error

b) Spatial error

Fig. 9 Error of Gottlieb–Turkel 2-4 scheme for the nonlinearproblem.
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Table 3 Axisymmetric scheme study data

Scheme CFL .1tU j /=D j Time Oumax Ovmax k
¯¡

1
2 U 2

j

¢

Gottlieb–Turkel 2-4 0.6 3.9644£ 10¡4 1.00000 0.26033 0.18561 0.080193
Runge–Kutta 4-4 1.2 7.9288£ 10¡4 0.83523 0.26266 0.20305 0.096392

Fig. 10 Improved spatial error of Gottlieb–Turkel 2-4 scheme for the
nonlinear problem.
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Solutions were obtained on a grid with 301 points in the axial
directionand 129 pointsin the radial direction(Fig. 15). The domain
extends 20 jet diameters downstream of the nozzle exit and 10 jet
diameters above the centerline. The grid models both the external
jet � ow� eld and the nozzle geometry, including the nozzle lip, in
order to include the radial variation in the velocity pro� le caused by
internal nozzle expansion, effects of under- or overexpansionof the
nozzle � ow and the effect of the nozzle lip geometry on the stability
and growth of the mixing layer.The grid is clustered radially toward
the mixing layer of the jet and axially toward the nozzle lip using
hyperbolic tangentstretching.The minimum grid spacingoccurs on
the nozzle lip, which is de� ned using 29 points, and the cell aspect
ratio is one.

Boundary conditions based on the local one-dimensional prop-
agation of � ow properties were used at the in� ow and out� ow.
While the jet exited into quiescent air in the experiment, a Mach
0.05 freestream was used in the calculation to maintain well-posed
boundaryconditions.Total pressureand temperaturewere speci� ed
in thenozzleplenum.The useof an exit zone to dampre� ectedwaves
from the out� ow boundary was explored in a previous study21 and
found not to be necessary for this case. Instead the static pressure
was speci� ed on the outer portion of the boundary, and the condi-
tions were extrapolatednear the jet centerline to allow for variation
in the static pressure. Flow tangency was imposed on the jet axis,
and the no-slip condition was imposed on solid surfaces.

a) Temporal error

b) Spatial error

Fig. 11 Error of low-dispersion Runge–Kutta 4-4 scheme for the non-
linear problem.

Results
The solutions were run for two characteristic times (the time for

an acoustic wave to pass through the solution domain) to establish
proper initial conditionsfor obtaining turbulent statistics.The solu-
tions were then run for an additional two characteristic times, and
the � ow� eld was averaged.Both schemeswere run using theirmaxi-
mum stable time step.The maximum stable time step is computedat
every point in the � ow� eld using the inviscid Courant–Friedrichs–

Lewy (CFL) condition.22 The smallest of these stable time steps
is then selected to advance the solution globally. The CFL num-
bers and corresponding time steps are listed in Table 3. Figure 16
shows the instantaneous entropy contours for the two schemes at
the � nal time. The two � ow� elds are similar, but the Runge–Kutta
scheme exhibits better resolution of the vortical structures. In ad-
dition, the initial vortex roll up of the shear layer occurs earlier
using the Runge–Kutta 4-4 scheme, x=D j D 0:91, compared to the
Gottlieb–Turkel scheme, x=D j D 1:38.Table 3 quanti� es the results
in terms of turbulent intensities Ou and Ov and turbulent kinetic en-
ergy k=. 1

2
U 2

j /. The Runge–Kutta scheme predicts higher maximum
turbulent intensities and kinetic energy than the Gottlieb–Turkel
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a) Temporal error

b) Spatial error

Fig. 12 Error of low-dispersion Runge–Kutta 4-6 scheme for the non-
linear problem.

Fig. 13 Improved spatial error of low-dispersion Runge–Kutta 4-6
scheme for the nonlinear problem.

scheme, indicating better resolution of the � ow� eld. Because the
error term caused by the spatial discretization is identical for both
schemes, one must conclude that the differences between the solu-
tions occur from the error term caused by the time discretizationand
the cross term. The simulation time presented in Table 3 is normal-
ized by the simulation time of the Gottlieb–Turkel scheme. Consis-
tent with the one-dimensional results, the Runge–Kutta scheme is
more computationallyef� cient, using 16.5% less CPU time.

Fig. 14 Ef� ciency of the numerical schemes for the nonlinearproblem.

Fig. 15 Computationalgrid.

a) Gottlieb–Turkel 2-4

b) Runge–Kutta 4-4

Fig. 16 Entropy contours for the axisymmetric jet.

Conclusions
Two types of high-order numerical schemes suitable for com-

putational aeroacoustics were examined. The Gottlieb–Turkel 2-4
predictor-correctorscheme and two Runge–Kutta schemes (4-4 and
4-6) are used to solve the one-dimensional inviscid convection of a
Gaussian pulse. Two cases, linear and nonlinear convection,are ex-
amined. The numerical solution was compared to the exact solution
to obtain the error. Ef� ciency of the schemes was determined by
comparing the numerical error with the computational cost needed
to obtain the solution. For schemes with lower-order time stepping,
the truncation error caused by the time stepping dominates the so-
lution for optimum time steps. This reduces the overall error of the
scheme to order of the time stepping and eliminates any bene� t
of the higher-order spatial discretization. Reducing the time step
can effectively increase the order of accuracy to that of the spa-
tial discretization.However, this increased accuracy is balanced by
an increase in the computational cost. The uniformly fourth-order-
accurate Runge–Kutta scheme proves to be superior to the second-
order temporal and fourth-order spatial accurate Gottlieb–Turkel
scheme in terms of truncation error and computational ef� ciency.
Increasing the spatial accuracy of the Runge–Kutta scheme to sixth
order does not improve the ef� ciency of the scheme.
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The Gottlieb–Turkel 2-4 and Runge–Kutta 4-4 schemes are then
used to solve the unsteady axisymmetric Navier–Stokes equations
for a supersonic jet � ow. These two schemes with identical spa-
tial discretizationerror terms but different temporal and cross-error
termsshowdifferentsolutionsin themixing layer.The Runge–Kutta
scheme provides better resolution of large-scale structures and re-
quires less computational time. This result indicates that the time
discretization is an important factor for unsteady Navier–Stokes
computations such as those performed in DNS and LES analyses.

In general, the temporal and spatial accuracy of a scheme cannot
be considered separately, and the error of the scheme is determined
by the dominate error term. The problems considered in this study
indicate that a numerical scheme with a balance of spatial and tem-
poral errors, such as the Runge–Kutta 4-4 scheme, is a better choice
for CAA problems.
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